The Cohomology for Wu Characteristics

نویسنده

  • Oliver Knill
چکیده

While the Euler characteristic χ(G) = ω1(G) = ∑ x ω(x) super counts simplices, the Wu characteristics ωk(G) = ∑ x1∼x2···∼xk ω(x1) · · ·ω(xk) super counts simultaneously pairwise interacting k-tuples of simplices in a finite abstract simplicial complex G. More generally, one can define the k-intersection number ωk(G1, . . . Gk), which is the same sum but where xi ∈ Gi. For every k ≥ 1 we define a cohomology H k (G1, . . . , Gk) compatible with ωk. It is invariant under Barycentric subdivison. This interaction cohomology allows to distinguish spaces which simplicial cohomology can not: for k = 2, it can identify algebraically the Möbius strip and the cylinder. The vector spaces H k (G) are defined by explicit exterior derivatives dk which generalize the incidence matrices for simplicial cohomology. The cohomology satisfies the Kuenneth formula: for every k, the Poincaré polynomials pk(t) are ring homomorphisms from the strong ring to the ring of polynomials in t. The case k = 1 for Euler characteristic is the familiar simplicial cohomology H 1 (G) = H (G). On any interaction level k, there is now a Dirac operator D = dk+d ∗ k. The block diagonal Laplacian L = D leads to the generalized Hodge correspondence bp(G) = dim(H p k (G)) = dim(ker(Lp)) and Euler-Poincaré ωk(G) = ∑ p(−1)dim(H p k (G)) for Wu characteristic and more generally ωk(G1, . . . Gk) = ∑ p(−1)dim(H p k (G1, . . . , Gk)). Also, like for traditional simplicial cohomology, an isospectral Lax deformation Ḋ = [B(D), D], with B(t) = d(t) − d∗(t) − ib(t), D(t) = d(t) + d(t)∗ + b(t) can deform the exterior derivative d which belongs to the interaction cohomology. Also the Brouwer-Lefschetz fixed point theorem generalizes to all Wu characteristics: given an endomorphism T of G, the super trace of its induced map on k’th cohomology defines a Lefschetz number Lk(T ). The Brouwer index iT,k(x1, . . . , xk) = ∏k j=1 ω(xj)sign(T |xj) attached to simplex tuple which is invariant under T leads to the formula Lk(T ) = ∑ T (x)=x iT,k(x). For T = Id, the Lefschetz number Lk(Id) is equal to the k’th Wu characteristic ωk(G) of the graph G and the Lefschetz formula reduces to the Euler-Poincaré formula for Wu characteristic. Also this generalizes to the case, where automorphisms Tk act on Gk: there is a Lefschetz number Lk(T1, . . . , Tk) and indices ∏k j=1 ω(xj)sign(Tj |xj). For k = 1, it is the known Lefschetz formula for Euler characteristic. While Gauss-Bonnet for ωk can be seen as a particular case of a discrete Atiyah-Singer result, the Lefschetz formula is an particular case of a discrete Atiyah-Bott result. But unlike for Euler characteristic k = 1, the elliptic differential complexes for k > 1 are not yet associated to any constructions in the continuum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

Digital cohomology groups of certain minimal surfaces

In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...

متن کامل

Endoscopy and the cohomology of $GL(n)$

Let $G = {rm Res}_{F/mathbb{Q}}(GL_n)$ where $F$ is a number field‎. ‎Let $S^G_{K_f}$ denote an ad`elic locally symmetric space for some level structure $K_f.$ Let ${mathcal M}_{mu,{mathbb C}}$ be an algebraic irreducible representation of $G({mathbb R})$ and we let $widetilde{mathcal{M}}_{mu,{mathbb C}}$ denote the associated sheaf on $S^G_{K_f}.$ The aim of this paper is to classify the data ...

متن کامل

FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES

ABSTRACT. Let R be a commutative noetherian ring, I and J are two ideals of R. Inthis paper we introduce the concept of (I;J)- minimax R- module, and it is shown thatif M is an (I;J)- minimax R- module and t a non-negative integer such that HiI;J(M) is(I;J)- minimax for all i

متن کامل

Extension functors of local cohomology modules

Let $R$ be a commutative Noetherian ring with non-zero identity, $fa$ an ideal of $R$, and $X$ an $R$--module. Here, for fixed integers $s, t$ and a finite $fa$--torsion $R$--module $N$, we first study the membership of $Ext^{s+t}_{R}(N, X)$ and $Ext^{s}_{R}(N, H^{t}_{fa}(X))$ in the Serre subcategories of the category of $R$--modules. Then, we present some conditions which ensure the exi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018